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ABSTRACT

Most current research into computers and music focus on the development of media fechnology for delivering music to
consumers (e.q., MP3 format, Infernet search engines, and so on). This research focuses on the development of
technology for musical creativity. This paper focuses on a particular technology currently being developed, based on
Artificial Life (A-Life). The Artificial Life (A-life) approach to the development of soffware for music is @ promising new
development. However, the vast majority of existing A-life-based systems for musical composition employ Genetic
Algorithms (GA) to produce musical melodies, rhythms and so on. In these systems, music parameters are represented
as genotypes and GA operators are applied on these representations fo produce music according fo the given fitness
criteria. It is suggested that strictly GA-based methods suffer from the fact that musical composition should not be
constfrained by a definite set of fitness criteria. Moreover music is largely a cultural phenomenon driven by social pressure
and this is cumbersome fo model with standard GA alone. An alfernative approach is proposed to using strictly GA-
based methods: the design of evolutionary algorithms that consider music as a cultural pbhenomenon whereby social
pressure plays an important role in the development of musical conventions. This paper infroduces three algorithms of
the authors” own design: popularity, fransformation and complexity algorithms, respectively. Tools are also devised for
extracting information about the behaviour of the algorithms in many different ways, providing the means fo study the
outcomes systematically.

Keywords: Evolutionary Computer Music, Artificial Life systems for musical composition, Computer models of music.

INTRODUCTION of such applications often demands the skiliful

From the time of discovery almost three thousand years combination of Software Engineering and  artistic

ago, the direct relationship between the pitch of a note creativity. Whereas most current research into computers

and the length of a string or pipe, to the latest computer
models of human music cognition and intelligence,
musicians have always looked at science to provide new
and challenging paradigms o study and create music.
The field of Computer Music is as old as Computer
Science. Computers have been programmed to play
music as early as the early 1950's when Geoff Hill
programmed the CSIR Mkl computer, in Sydney,
Australia, to play the popular musical melodies
(Doornbusch, 2005). Nowadays, the computer is
becoming increasingly ubiquitous in all aspects of music.
Applications of computer technology to music ranges
from systems for musical composition to systems for
distribution of music on the Internet. The implementation

and music focuses on the development of media
technology for delivering music to consumers (e.g., MP3
format, Internet search engines, and so on). This research
focuses on the development of fechnology for musical
creativity. That is, technology to aid musicians to create
content for the media. This paper focuses on a particular
technology that the authors are developing, which is
based on Artificial Life (A-Life).

The A-lLife approach fo music is a promising new
development for composers. It provides an innovative
and natural means for generating musical ideas from a
specifiable set of primitive components and processes
reflecting the compositional process of generating a
variety of ideas by brainstorming followed by selecting
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the most promising one for further iterated refinement

(Kim and Cho, 2006). We are interested in implementing
systems for composition using A-Life-based models of
cultural fransmission; for example, models of the
development and maintenance of musical styles within
a particular cultural contexts and their reorganization and
adaptationinresponse to cultural exchange.

Existing A-Life-based systems for musical compaosition
normally employ Genetic Algorithms (GA) to produce
musical melodies, rhythms and so on. In these systems
music parameters are represented as “genotypes” and
GA operators are applied on these representations to
produce music according to the given fitness criteria.
Because of the highly symbolic nature of Western music
notation, music parameters are suitable for GA-based
processing and a number of musicians, including the
authors, have used such systems to compose music.
However, two problems have been identified with the GA-
based approach to generative music. Firstly, a musical
composition should not be driven by a constant set of
fitness criteria. And secondly, music is largely a cultural
phenomenon driven by social pressure and this is
cumbersome to model with standard GA alone.

The first problem emerges from the fact that ‘music is not
an exact science’. For example, it differs from
Engineering, whereas the success of a piece of
Engineering would normally be measured by its ability to
match a number of functional requirements effectively,
the success of a piece of music cannot be measured so
objectively. Indeed, whereas good engineers are praised
for following the rules of their métier strictly, good
composers (at least in the Western music fradition) are
praised for clever violations of musical conventions.
Moreover, in most cases, composers do not explicitly
know a priority how a new piece of music will sound like,
until it is completed and indeed performed. Therefore,
rather than tfools to generate efficient solutions to
problems automatically, composers need tools to
explore a vast space of possible outcomes. Biles (1994)
proposed an interesting approach to implement GA-
based systems for the exploration of a space of musical
possibilities, which takes intfo consideration the evaluation

of the user; that is, the user evaluates the fitness of each
generation of “solutions”. This is surely a very interesting
ideqa, but this slows down the compositional process
enormously. Biles is aware of this problem, which he refers
to asthe “fitness bottleneck” problem.

The second problem is largely related to a problem that is
endemic in the field of Computer Music, which is the
fendency o design systems to generate music from
algorithms that were not designed for music in the first
instance. For example, in the late 1980s it became
fashionable to implement systems that generated music
from fractals (Mandelbrot, 1982). There was a tendency
at that time to overstate the adequacy of fractals as
generators of music. Nowadays, we may be withessing a
similar case of overstatement on the adequacy of GA as
generators of music. Although we acknowledge that
there have been a few rather successful stories (Biles,
1994), we believe that additional A-Life-based methods
need to be developed in order to move the exciting field
of Evolutionary Computer Music (Miranda and Biles,
2007; Miranda, 2004) forward.

One way forward is to build systems with A-Life algorithms
designed or suitably modified to address musical issues.
The work presented in this paper contributes to this line of
thought by looking intfo the design of algorithms that
consider music as a cultural phenomenon whereby
social pressure plays an important role in the
development of musical conventions. A plausible
method to embed social dynamics in such algorithms is
fo design them within the framework of interacting
autfonomous software agents.

This paper infroduces three algorithms of the authors’
own design, referred to as popularity, fransformation and
complexity algorithms, respectively. These algorithms are
used to implement a system for the composition of
rhythms where the user can generate rhythmic
sequences and also monitor the behaviour of the system.
The system offers the ability to extract information about
the behaviour of the agents and the evolving rhythms in
many different ways, providing the composers with
means to explore the outcomes systematically. This
paper will focus on the algorithms themselves, the
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information that one can extract about their behaviours
and the analyses of the behaviours. An in-depth
discussion on how the algorithms are used artistically to
compose pieces of music falls beyond the scope of this
paper.

By way of related research, the work by De Boer (De Boer,
1999) on modeling the emergence of vowel systems by
means of imitations games is cited. Also, Miranda
(Miranda, 2002) has developed a model of the
emergence of infonation systems using imitation games.
This research is inspired by the work developed by
research into gaining a befter understanding of the
evolution of language with computer models (Kirby,
2002; Vogt, 2000), particularly the work of Steels (Steels,
1995) on language imitation games with software
agents. Basically an imitation game consists of one
agent picking a random sound from its repertoire and the
other agent frying to imitate it. Then, a feedback is given
about the success of the imitation. On the basis of this
feedback, the agents update theirmemories.

1. The Agents

In this section, the agents and their “cognitive ability”are
infroduced; that is, the operations that they are able to
perform on rhythmes.

The agents are identical to each other and the number of
agents in a group may vary. The agents move in a virtual
2D space (Figure 1) and they normally interact in pairs.
Essentially, the agents interact by playing rhythmic
sequences to each other, with the objective of
developing repertoires of rhythms collectively. At each
round, each of the agents in a pair plays one of the two
different roles: the player and the listener. The agents
may perform operations on the rhythms that they play to
each other, depending on the interaction algorithm
being used and on the status of the emerging repertoire.
The agents are provided with a memory fo store the
emerging rhythms and other associated information.

The fundamental characteristic of human beings is that
we are able to perceive, and more importantly, to
produce anisochronous pulse (Handel, 1989). Moreover,
humans show a preference for rhythms composed of
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Figure 1. 2D virtual worlds with different sizes holding
10 agents. A darker colour indicates a cluster.

(This will be clarified in due course)

integer ratios of the basic isochronous pulse (Drake and
Bertrand, 2001). Therefore, rhythms are represented here
as interonset intervals in terms of small integer ratios of an
isochronous pulse (Figure 2).

1.1 Transformations of Rhythms

At the core of the mechanism by which the agents
develop rhythmic sequences is a set of basic
fransformation operations. These operations enable the
agents tfo generate new rhythmic sequences and
change the rhythmic sequences that they learn as the
result of the interactions with other agents. The
fransformation operations are as follows:

¢ Divide arhythmic figure by two (Figure 3a).

Music Notation

III& P
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Represenatin 10y 5
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Figure 2. Standard music notation of a rhythmic sequence
and its corresponding interonset representation
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¢ Merge two rhythmic figures (Figure 3b).

e Addoneelementtothe sequence (Figure 3c).

e Remove one element from the sequence
(Figure 3d).

The definition of these transformations were inspired by
the dynamical systems aqpproach to study human
bimanual coordination (Kelso, 1984) and is based on the
notion that two coupled oscillators will converge to
stability points at frequencies related by integer ratios
(Beek et al., 2000). Furthermore, common music notation
facilitates these types of transformations. Other
fransformations that divide a figure into three, five and
other prime numbers are defined, but the impact of
these additional fransformations on the model is beyond
the scope of this paper. Addition and removal
fransformations were introduced to increase the diversity
in the pool of rhythms and to produce rhythms of different
lengths.

1.2 Measurement of Similarity of Rhythms

The agents are programmed with the ability fo measure
the degree of similarity of two rhythmic sequences. This
measurement is used when they need to assess the
similarity of the rhythms that they play to each other. Also,
this algorithm is used to measure the similarity between
the repertoires of rhnythmes from different agents.

In the previous paper (Martins et al., 2005), a method to
measure the degree of similarity between two sequences
of symbols was introduced by comparing various
subsequences at various levels. The result is a vector,

F— —N
a) | 1 |1f2|1f2| 1 H 1 I1f4|1ﬂ'4|1/2| 1 |
L
b) |1|1f2|1f2|1|=ﬂ1|1|1|
c) | | |1f2|1f2| 1 M 1 |112|1f2| 1 | 1 |
d) |1 |U2|1f2| 1 FH11‘2|1/2| 1 |

Figure 3(a - d). Examples of rhythmic transformations

referred to as the Similarity Coefficients Viector (SCV),
which contains the interim results of the comparisons
between subsequences. Forthe present work, a version of
the SCV method that deals with rhythmic sequences is
devised, whichisintroduced below.

Let us define the block distance between two sequences
containing the same number of elements as follows (1):

Where v and w are the two sequences (vectors) that are
being compared, and v, and w, are the individual
components of these vectors.

After obtaining the resulting evaluation of the block
distances on a given level (length of a subsequence), we
can write a matrix for the k-level, corresponding to the
comparison of all the subsequences with length k
between the two main sequences (2):

k) (k k k
d(v(l ).W1 )) (i(vi )‘“TEng—FH—I))
k) (k) (% k
5] o d(vé ).Wi " d(vs >.WEWL;{+”)
|y ®
d(v{n—ﬁurl)‘ wi) .. d(v(n—k:Jrl)‘W(m—IchlJ)

Where d is the distance defined by Equation 1 between

(k)

allthe subsequences v" of v and all the subsequences w"
of w. Next, let us define the k-level Similarity Coefficient as

follows (3):

2(k)

(k) =
erlvam) (n—k+1(m-k+1)

Where, (k] is the number of zeros in the matrix D, Roughly
speaking, the similarity coefficient measures the sparsity
of the matrix DY, The higher the coefficient c(k), the higher
is the similarity between the subsequences of level k.

Next, we can collect all the k-level coefficients in a vector
referred to as Similarity Coefficient Vector (SCV). This is
defined asfollows (4):

C=|cM,e?, ..., c-(m"”(”“””}
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Figure 4 shows an example of building a 3-level Distance
Matrix and its respective SCV is SCV = [0.4167 0.1333
0.12500].

From this vector we can obtain a scalar value in order fo
establish a comparative analysis between larger sets of
rhythms, such as the repertoires of two agents. We can
take the rightmost nonzero value from the SCV, which
corresponds to the higher level where two matching
sequences can be found. We can either take a weighted
sum of the SCV values or the average of all values, as

follows (R):
min(m,mn)

> SCV(k)

k=1

1

SCVyp = ————
min(m,n)

where SCV (k) are the coefficients of similarity for each of
the klevels.

The next step is to compare the repertoire of the agents
in order to observe the development of relationships
amongst the agents in a group of agents; for instance, to
observe if the agents form distinct sub-groupings.

The similarity of the repertoire of rhythms amongst the
agents in a group is computed by creating a matrix of
SCV,, values of the repertoires of all pairs of agents.
Matrices with the columns and rows corresponding to the
number of rhythms in the memory of each agent reveals
the similarity between theirrepertoires (Figure 5).

1 ( 1/2 12 1

L —|

-|D|1-2 1

Figure 4. Example of building a 3-level Distance Matrix

2
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Figure 5. Similarity matrices between
the repertoires of 4 agents. The darker the
colour, the more similar the rhythms
By collapsing both the rows and the columns of the
matrices, and taking the maximum values for each of
them and an averaged sum,the scalar of similarity
between repertoiresis obtained, as follows (6):

SimRepy ) =

nRap nRa;

Z maz(SCVay,)rows + Z maz(SCV,y) cols
i=1 G=1

1
nRar +nRa

Where the first tferm corresponds to the sum of the
maximum values of the SCV,,, defined in Equation 5, for
every row, and the second term is the correspondent for
every column; nR,, and nRk,, are the number of rhythms in
the repertoire of the compared agents.

In the case shown in Figure 6, it would be SimRep,, = 0.7
or, conversely, the distance between the repertoires of
both the agents k and |/ would be
DistRep,, = 1 - SimRep,,= 0.3. The values of 0.65 and 0.8
in Figure 6 corresponds o the similarity of the repertoires
from the point of view of each agent, which is used to

09]05)06]03 0.9

_D 0.8

0210110705 0.7

09]05)0.7]05

&

0.65

Figure 6. Scalar value of similarity between repertoires
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generate proximity matrices and graphs to monitor the

behaviour of the evolving repertoire of rhythms and the
agents.

Finally, the development of repertoires of rhythms for a
group of agents as a whole can be observed by
conducting a hierarchical cluster analysis of all distance
measures between the agents (DistfRep). This cluster
analysis produces a dendrogram using a linkage method
based on an unweighted average distance, also known
as group average in which the distance between two
clusters A and B, D, is given by the following equation
U W i, <

JN'-A . ;NTB

i

where N, and N, are the number of elements in A and B,
and d, are pairwise distances between the elements of
clusters A and B. The hierarchical cluster analysis
produces a dendrogram of the type shown in Figure 11.
This dendrogram is drawn through an iterative process
until allthe individuals or clusters are linked.

1.3 Measurement of Complexity of Rhythms

The complexity of a rhythmic sequence is measured as
follov nF

nkF + E g
i=1
nF

e — (8)

Complezity =

Where nF is the number of rhythmic figures contained in
the sequence, n; is the value of the numerator of a
rhythmic figure, and T, is the relative length of a rhythmic
figure, considering that each rhythmic figure is a fraction
ofthe pulse.

This is a computationally cost effective method to
measure the complexity of a rhythmic sequence. It is
important to bear in mind that our implementation
ensures that there are no reducible fractions included in
the sequence, meaning that there is always a single
numerical representation for a given rhythm. Figure 7
shows an example of a graph plotting the complexity of a
sequence of relative interonset intervals [1, 1] as it is
fransformed thirty times recurrently.

25} 1
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number of transformations

Figure 7. The complexity of a given rhythmic
sequence increases in function of the number of
fransformations applied to it

2. The Algorithms

This section introduces the three proposed algorithms
and the respective analysis methods that are
implemented. Each algorithm is infroduced in the
context of illustrative experiments aimed at studying the
development of repertoires of rhythmic sequences from
three different perspectives:

¢ Fromthe perspective of anindividual agent.

¢ Fromthe perspective of a group of agents, referred to
asthe society.

e Fromthe perspective of the developed rhythms.

From the perspective of an individual agent, the
development of the size and the complexity of the
repertoire of individual agents is analyzed. From the
perspective of the society, the values of the
corresponding individual measures from the agents, as
well as the similarity between the agents and how they are
clustered in terms of the rhythms they share are analyzed.
Finally, from the perspective of the developed rhythms,
their lifetime, the amount of rhythmic sequences that the
society develops and the degree to which the agents
share similar rhythms are measured. The lifetime of a
rhythmic sequence is fraced by counting the number of
agents that hold the sequence in their memories during
the interactions. Figure 8 shows graphs illustrating these
various types of analyses.
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Number of rhythms per agent
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Figure 8. a) Development of the size of the repertoire
for different agents; b) Complexity of the rhythms
of the society; c)Number of agents sharing a particular rhythm

The experiments were run for 5000 iterations each for a
number of times, with the objective of observing the
behaviour of the agents, the society and the evolving
rhythms, under different conditions. The experiments
were run with societies of 3, 10 and 50 agents. For some of
the experiments the lifetime of the agents were limited to
1000 iteratfions; when an agent dies, another is born.
Sometimes the algorithms take into account the
movement of the agents in the 2D space, which may or
may notinfluence the nature of the iterations.

2.1 The Popularity Algorithm

Popularity is a numerical parameter that each agent
attributes to a rhythm in its repertoire. This parameter is

modified both by the (agent-) listener and by the (agent-)
player when they interact with each other. If the listener
recognises a rhythm (that is, if it holds the “perceived”
rhythm in its repertoire), then it will increase the popularity
index of this rhythm and will give a positive feedback to
the player. A positive feedback is an acknowledgment
signal, which will prompt the player to increase the
popularity index of the rhythm in question in its repertoire.
Conversely, if the listener does not recognize the rhythm,
then it will add it to its repertoire and will give a negative
feedbackto the player. This negative feedback will cause
the player to decrease the popularity index of this rhythm.
Furthermore, there is a memory loss mechanism whereby
after each iteration all the rhythms have their popularity
index decreased by a small value of 0.05. This accounts
for a natural drop in the popularity index due to ageing. A
diagram summarising the popularity algorithm s
displayedin Figure 9.

Figure 10 shows the results after 5000 iterations of the
popularity algorithm without population renewal.

Figure 10a displays the development of the repertoire of
individual agents and Figure 10b displays the
corresponding average across all the agents. Here the
repertoires of the agents grow steadily upto
approximately 1000 iterations and subsequently
oscillates around a stable point. Figure 10c displays the

Agent Player

Play a rhythm and increase
the counter for the number of
times that this rhythm has
been used.

Receive feedback.

If feedback is positive, then
increase the counter for the
popularity of the rhythm in its
repertoire.

If feedback is negative, then
decrease the counter for the
popularity of the rhythm in its
repertoire.

If the minimum popularity
threshold for this rhythm has
been reached, then remove
this rhythm from its repertoire.

If the fransformation threshold
for this rhythm has been
reached then fransformation
this rhythm.

Agent Listener

Search for the heard
rhythm in its repertoire.

If the rhythm is found,
then give a positive
feedback to the agent
player and increase the
counter for the popularity
of the thythm in its
repertoire.

If the rhythm is not found,
then add this rhythm to
the repertoire and give a
negative feedback to the
agent player.

Figure 9. The popularity algorithm
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a) Number of rhythms per agent b} Average number of thythms per agent c) Number of thythms in the society
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Figure 10(a-i). Results from a typical run of the popularity
algorithm with 10 agents

development of the repertoire of the whole society being
adirect conseguence of the lifetime of each rhythm. The
average number of agents sharing a rhythm (Figure 10d)
is calculated by summing the instant number of agents
sharing a rhythm for all rhythms, and dividing the result by
the number of rthythms currently present in the society
(Figure 10c). This graph (Figure 10d) provides the means
to assess the global behaviour of the society; forinstance,
if it develops coherently in terms of the popularity of the
existing rhythms. Figure 10e represents the development
of complexity of the individual agents and Figure 10f
gives the corresponding average. Initially, the size and
complexity of the repertoire of individual agents are very
close to average, but this frend is replaced quickly by the
repertoires of different sizes amongst the agents.

The last three graphs show the degree of similarity
between the repertoires of the agents according to the
similarity measure defined earlier. Figure 10g displays the
information about the identity of the agent with whom
each agent relates most; i.e., one which has the highest
similarity value. The graph in Figure 10h shows the agents
that are regarded by others as being most similar to
them. In this case, it shows that agent 3 has three agents
with similar repertoires, and agent 10 is the one that
concentrates the highest number of keen agents, having
six agents considering its repertoire to be more similar to

theirs.

Hierarchical cluster analysis is conducted in order to
observe the groupings of agents according to the
similarity of their repertoires. Figure 11 shows the
dendrogram containing elements of three societies of 10
agents each: Society 1 comprises agents 1to 10, Society
2 comprises agents 11 to 20, and Society 3 the remaining
21 to 30. By comparing the three societies we can
observe the three clearly independent clusters, which
were developed separately in three separate runs with
the same set of parameters. In addition to the previous
observations, this suggests that the repertoires that
emerged from the popularity algorithm display diversity,
are stable in terms of size, and are coherent within their
respective societies. The differences in the clusters within
agiven society can also be observed.

By allowing the agents to move in their environment, it is
also been investigated whether the popularity algorithm
(an others) could influence the movement of the agents
and whether this process would influence the
development of their repertoires. In this case, if alistening
agent “recognises” the rhythm played by the other agent,
then it will follow the player agent in the space in the next
iteration of the algorithm.

Figure 12 shows periodic clustering of one or more groups
of agents that move together and keep interacting until
the cluster is scattered due to an unsuccessful
interaction.

In Figure 13, we can observe two behaviours that are
typical of the popularity algorithm with movement taken
into account. The first being that there are many more

+
| R

Figure 11. Dendrogram resulting from the hierarchical cluster
analysis conducted in the context of the popularity algorithm
containing three independent societies with 10 agents each

8 2 & 8

® 2
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Figure 12. Clustering can take place (figure on the left)
followed by scattering at a later stage (figure on the right).
A cluster is indicated by a darker colour
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Figure 13. Results from a typical run of the popularity
algorithm taking into account the movement of the
agents as an influencing factor in the evolution of the
repertoire

rhythms affecting the interactions than in the case
without movement; this is due to the fact that everytime a
positive feedback occurs, two or more agents will form a
group. This increases the number of interactions between
them and consequently the number of rhythms in their
repertoires. The second being that there is an initial
overshoot of the size of the repertoire before reaching a
level of stability. This is possibly caused by the initial
clustering of agents when individual repertoires grow
consistently among very closely related agents.

Figure 14 shows the lifetime of sequences that emerged
during the typical runs of the popularity algorithm.

500 1000 1500 2000 2500 3000 3500 4000 4500 0CO 500 1000 1500 2000 2600 3000 3500 4000 450) 5000
iterations iterations

a) Popularity algorithm b) Popularity algorithm with movement

influencing the repertoire

Figure 14. The lifetime of all thythms that emerged using the
popularity algorithm in cases where: a) movement does not
influence the developments, and b) movement influences
the developments. The number of agents that share a
particular rhythm is represented by tones of grey; that is,
the darker the colour the higher the number of agents
sharing a particular rhythm

2.2 The Transformation Algorithm

A diagram summarising the transformation algorithm is
given in Figure 15. As its name suggests, the
fransformation algorithm applies transformations on a
rhythm whenever it is communicated between agents.
The motivation behind this algorithm is to foster novelty in
the repertoires of the agents. The fransformation
algorithm allowed for experiments aimed at assessing the
degree to which the tfransformations occurring during the
interactions have an impact on the organisation of the
emerging repertoire as time progresses.

It is possible to observe in Figure 16 that due to the rise of
the amount of fransformations, the repertoires are much
larger than in the popularity algorithm. For instance,
compare Figure 10b with Figure 16b. Figure 16f shows the
development of the average complexity of the society,
where we can observe two clearly differentiated growing
rates before and after 200 iterations. When this algorithm
is run with 50 agents we can also observe similar growing
rates, although the initial rate is not as steep asitis with 10
agents, and the fransition is smoothed (Figure 17).

Agent Listener

Agent Player Agents present in the same

geographical position of the

Play a rhythm and agent player listen fo the thythm
increase the counter for :> and compare it with all rhythms

the number of times that in their repertoire.

this rhythm has been
used. If the heard rhythm is not found
then transform this rhythm and

add it fo the repertoire.

Figure 15. The transformation algorithm
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Figure 16. Results from a typical run of the transformation
algorithm with 10 agents
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Figure 17. Average complexity evolution curves resulting
from the transformation algorithm with 10 and 50 agents

2.3 The Complexity Algorithm

Adiagram summarising the complexity algorithm is given
in Figure 18. With the complexity algorithm one can study
the effect of preference for particular types of rhythms.
For instance, we can observe whether the agents would
show preference for rhythms with identical complexity.

With the complexity algorithm, the agents include in their
repertoire only those listened rhythms that fall within a
window of complexity centred in the average complexity
of the rhythms of the listening agent. That is, all listened
rhythms that fall within the interval of [AvComplexity - 1,
AvComplexity+ 1] will be included in the repertoire of the
agent.

Figure 19 displays the results from a run of the complexity
algorithm with the same parameters as for the run of the

If the complexity of the rhythm falls
within the complexity window (whose
central value is the average

Figure 18. The complexity algorithm
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Figure 19. Results from a typical run of the complexity
algorithm with 10 agents
popularity algorithm shown in Figure 10. The most
interesting emergent behaviour that can be observed
from these graphs is the distinct repertoires developed by
the agents 5 and 8; they are distinct in terms of the
complexity (represented by two distinct plots in
Figure 19e) and the number of developed rhythms
(represented by distinct plots at the bottom on the graph
in Figure 19a). Although they are considered to have the
smaller values of proximity in relation to the closer agent
(Figure 19i), their development seems to be tightly
connected. It is seen here that initial small changes in
complexity due to tfransformations can actually result in
completely different developments between the agents.

The cluster free for the results shown in Figure 19 is givenin
Figure 20. Two main clusters appear, separated by a
value of DistRep = 0.8. Furthermore, the two agents that
at an early stage of the simulation were able to perform
fransformations leading to sequences of higher
complexity remain more apart than the agents of the
othercluster.
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constantly in the other two algorithms. It is understood
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Figure 20. Dendrogram resulting from the hierarchical
cluster analysis conducted in the context of the
complexity algorithm with 10 agents

Conclusion

Most current approaches using A-Life in software for
generating music entail the application of a GA. It was
suggested that a strictlly GA-based approach to
generate music is guestionable because they were not
designed to address musical problems in the first place,
but Engineering problems. The act of composing music
seldom involves an automated selective procedure
tfowards an ideal outcome, based on a set of definite
fitness criteria.

As a way forward, the authors suggested that A-Life-
based systems for generating music should employ
algorithms that consider music as a cultural
phenomenon whereby social pressure plays an
important role in the development of musical
conventions. To this end, three algorithms inspired by
A-Life were proposed: the popularity, fransformation and
complexity algorithms, respectively. In addition, a
number of methods were developed to monitor the
behaviour of the algorithms.

In all runs of the three algorithms, the emergence of
coherent repertoires were observed across the agentsin
the society. Clustering of agents according to their
repertoires could also be observed on various occasions.

Whereas the size of the reperoire is controlled by a
popularity parameter in the first algorithm, it tends to grow

that this behaviour would change if the lifetime of the
agents is limited, which would imply some form of
population renewal. This might increase the role of the
memory loss mechanism and therefore constrain the
growth of the repertoire. Also a small subset of agents that
tend to concentrate the preference of most of the
population was observed. This frend tended to appearin
many runs with different seffings, in all the three
algorithms. In the third algorithm we observed that large
clusters of agents tended to appear, grouped according
to the complexity and average number of rhythms.

As mentioned earlier, a system for the composition of
rhythms was implemented using the three algorithms
infroduced in this paper. The analysis methods shown
above offer the ability to extract information about the
behaviour of the agents and the evolving rhythms in
many different ways, providing composers the means to
explore the outcomes systematically. However, an in-
depth discussion on how the system is used artistically to
compose pieces of music falls beyond the scope of this
paper, and shallbe reportedin the future.
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