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Abstract. The A-Life approach to Music is a promising new develop-
ment. The vast majority of existing A-Life systems for musical compo-
sition employ a Genetic Algorithm (GA) to produce musical melodies,
rhythms, and so on. In these systems, music parameters are represented
as genotypes and GA operators are applied on these representations to
produce music according to given fitness criteria. We have identified two
methodological limitations of such GA-based systems: one relates to the
fact that composition should not be driven by a constant set of fitness
criteria and the other is to do with the fact that music is largely a cultural
phenomenon driven by social pressure and this is cumbersome to model
with standard GA alone. An approach improve this scenario is to build
systems with A-Life algorithms designed primarily to address musical
issues, rather than using algorithms that were not designed for music in
the first place. The work presented in this paper contributes to this line
of thought by proposing the design of algorithms that consider music as a
cultural phenomenon whereby social pressure plays an important role in
the development of musical conventions. We introduce three algorithms:
popularity, transformation and complexity algorithms, respectively. The
algorithms were implemented in the context of a system for composition
of rhythms, where the user can explore their potential to generate rhyth-
mic sequences and also monitor their behavior. Finally, we explore the
composition capabilities of the system by using the rhythms developed
by the agents during the simulations in a collective performance environ-
ment. This bottom-up approach automatically defines an implicit metric
structure.
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1 Introduction

A comprehensive overview of applications of A-Life published recently mentioned
that A-Life has been applied in the field of Music and indicated a few examples of
A-Life systems for musical composition [1]. Why should musicians be interested
in A-Life?
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From the discovery almost three thousand years ago of the direct relationship
between the pitch of a note and the length of a string or pipe, to the latest
computer models of human musical cognition and intelligence, musicians have
always looked at science to provide new and challenging paradigms to study and
compose music.

The A-Life approach to Music is a promising new development for composers
and musicologists alike. For composers, A-Life provides an innovative and natural
means for generating musical ideas from a specifiable set of primitive components
and processes reflecting the compositional process of generating a variety of
ideas by brainstorming followed by selecting the most promising ones for further
iterated refinement. For musicologists, A-Life techniques might be used to model
the cultural transmission and change of a population’s body of musical ideas over
time; e.g., to model the development and maintenance of musical styles within
particular cultural contexts and their reorganization and adaptation in response
to cultural exchange. In both cases, the musical evolution can be influenced by
a variety of constraints and tendencies built into the system, such as realistic
cognitive and environmental factors that might influence the way in which music
is experienced, learned, stored, modified, and passed on between individuals.

The vast majority of existing A-Life systems for musical composition employ
a standard Genetic Algorithm (GA) to produce musical melodies, rhythms, and
so on. Normally, music parameters are represented in these systems as geno-
types and GA operators are applied on these representations to produce music
according to given fitness criteria; for a review, please refer to [2].

Because of the highly symbolic nature of Western music notation, music
parameters are suitable for GA-based processing and a number of composers,
including ourselves, have used such systems to compose music. However, we have
identified two methodological limitations of such GA-based systems which may
jeopardise further developments in this area: a) fitness criteria are not easy to
define when dealing with musical composition and b) music is largely a cultural
phenomenon driven by social pressure and this is cumbersome to model with
standard GA alone.

The first limitation emerges from the fact that music is not an exact sci-
ence. For example, it differs from engineering. Whereas the success of a piece
of engineering would normally be measured by its ability to match a number
of functional requirements effectively, the success of a piece of music cannot be
measured so objectively. Indeed, whereas good engineers are praised for following
the rules of their métier strictly, good composers (at least in the Western music
tradition) are praised for clever violations of musical conventions. Moreover, in
most cases, composers do not explicitly know a priory how a new piece of music
will sound like until it is completed and indeed performed. Therefore, rather
than tools to generate efficient solutions to problems automatically, composers
need tools to explore a vast space of possible outcomes.

Biles [3] proposed an interesting approach to implement GA-based systems
for the exploration of a space of musical possibilities, which takes into considera-
tion the evaluation of the user; that is, the fitness of each generation is evaluated
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by the user. This is surely a very interesting idea, but this slows down the com-
positional process enormously. Biles is aware of this problem, which he refers to
as the “fitness bottleneck” problem.

The second limitation is largely related to a problem that is endemic in the
field of Computer Music, which is the tendency to design systems to generate
music from algorithms that were not designed for music in the first instance.
For example, in the late 1980s it became fashionable to implement systems that
generated music from fractals [4], but such systems seldom produced significant
pieces of music. There was a tendency at the time to overstate the adequacy of
fractals for algorithmic composition. In reality, fractals are not appropriate to
convey musical information, but appealing images: the eye can grasp an entire
image at a fraction of the time needed to grasp even a short sound sequence.

Nowadays, we may be witnessing a similar case of overstatement on the
adequacy of GA for algorithmic composition. Although we acknowledge that
there have been rather successful stories (e.g. [3, 5]), we believe that additional
evolutionary computation methods need to be developed in order to move the
field of evolutionary computer music forward.

One way forward is to build systems with A-Life algorithms designed or
suitably modified to address musical issues. A-Life methods have been previously
used for music composition [6, 7] or to study the evolution of bird songs [8–10].

The work presented in this paper contributes to this line of thought by looking
into the design of algorithms that consider music as a cultural phenomenon
whereby social pressure plays an important role in the development of musical
conventions. A plausible method to embed social dynamics in such algorithms
is to design them within the framework of interacting autonomous agents.

In this paper we introduce three algorithms, referred to as popularity, trans-
formation and complexity algorithms, respectively. These algorithms were im-
plemented in the context of a system for composition of rhythms. In this system
the user can explore the potential of these algorithms to generate rhythmic se-
quences and also monitor the behavior of the system. The system offers the
ability to extract information about its behavior in many different ways, provid-
ing composers the means to explore the outcomes systematically.

Our research is greatly inspired by the work developed by research into gain-
ing a better understanding of the evolution of language with computational
models [11–15], particularly the work of Steels [11] on language imitation games
with software agents and robots. Basically an imitation game consists of one
agent picking a random sound from its repertoire and the other agent trying to
imitate it. Then a feedback is given about the success of the imitation. On the
basis of this feedback, the agents update their memories.

By way of related research, we cite the work by de Boer [12] on modeling the
emergence of vowel systems by means of imitations games. Also, Miranda [16]
has developed a variant of de Boer’s games in order to model the emergence of
intonation systems.

In a previous paper [17] we provided a detailed explanation on the algorithms
of interaction that enable repertoires of rhythms to develop. We have also studied
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the development of complexity of the repertoires and similarity between agents
as a result of their behaviours. In this paper we intend to go a step further
placing the agents in a group performance, letting the structure of the rhythmic
phrases be defined collectively.

2 The Agents

The agents are identical to each other and the number of agents in a group may
vary. The agents move in a virtual 2D space and they normally interact in pairs
(Figure 1). Essentially, the agents interact by playing rhythmic sequences to each
other, with the objective of developing repertoires of rhythms collectively. At
each round, each of the agents in a pair plays one of two different roles: the player
and the listener. At each interaction, the agents may perform operations on the
rhythms that they play to each other, depending on the interaction algorithm
and on the status of the emerging repertoire. The agents are provided with a
memory to store the emerging rhythms and other associated information.

1 2 3 4 5 6

1

2

3

4

5

6
1

2

3

4

5

6

7

8

9

5 10 15 20 25 30

5

10

15

20

25

30
1

2

3

4

5

6

7

8

9

Fig. 1. 2D virtual worlds with different sizes holding 10 agents. A darker color indicates
a cluster. (This will be clarified in due course.)

One interesting ability of human beings is that we are able to perceive, and
more importantly, to produce an isochronous pulse [18]. Moreover, humans show
a preference for rhythms composed of integer ratios of the the basic isochronous
pulse [19]. Therefore, rhythms are represented here as interonset intervals in
terms of small integer ratios of an isochronous pulse (Fig. 2).

Music Notation

Representation
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Fig. 2. Standard music notation of a rhythmic sequence and its corresponding interon-
set representation.
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2.1 Transformations of Rhythms

At the core of the mechanism by which the agents develop rhythmic sequences is
a set of basic transformation operations. These operations enable the agents to
generate new rhythmic sequences and change the rhythmic sequences that they
learn as the result of the interactions with other agents. The transformation
operations are as follows:

– Divide a rhythmic figure by two (see Fig. 3a)
– Merge two rhythmic figures (see Fig. 3b)
– Add one element to the sequence (see Fig. 3c)
– Remove one element from the sequence (see Fig. 3d)

1 1/2 1/2 1 1 1/4 1/4 1/2 1

1 1/2 1/2 1 1 1 1

1 1/2 1/2 1 1 1/2 1/2 1 1

1 1/2 1/2 1 1/2 1/2 1

a)

b)

c)

d)

Fig. 3. Examples of rhythmic transformations.

The definition of these transformations were inspired by the dynamical sys-
tems approach to study human bimanual coordination [20] and is based on the
notion that two coupled oscillators will converge to stability points at frequencies
related by integer ratios [21]. Furthermore, common music notation facilitates
these types of transformations. We have defined other transformations that di-
vide a figure into three, five, and other prime numbers, but the impact of these
additional transformations on the model is beyond the scope of this paper. Ad-
dition and removal transformations were introduced to increase diversity in the
pool of rhythms and to produce rhythms of different lengths.

3 The Interaction Algorithms and the Experiments

The interaction algorithms and the analysis methods that we have implemented
in our system are introduced below. Each algorithm is introduced in the context
of illustrative experiments aimed at studying the development of repertoires of
rhythmic sequences from three different perspectives:
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– From the perspective of an individual agent
– From the perspective of a group of agents, referred to as the society
– From the perspective of the developed rhythms

From the perspective of an individual agent, we studied the development
of the size and the complexity of the repertoire of individual agents. From the
perspective of the society we averaged values of the corresponding individual
measures from the agents, as well as similarity between agents and how they were
clustered in terms of the rhythms that they shared. Finally, from the perspective
of the developed rhythms, we measured their lifetime, the amount of rhythmic
sequences that the society developed and the degree to which the agents shared
similar rhythms. We traced the lifetime of a rhythmic sequence by counting the
number of agents that possessed this sequence at each iteration. Fig. 4 shows
graphs illustrating these various types of analyses.
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Fig. 4. a) Development of the size of the repertoire for different agents.; b) Complexity
of the rhythms of the whole society; c)Number of agents sharing a particular rhythm.

The experiments were run for 5000 iterations each for a number of times,
with the objective of observing their behavior under different conditions. We
have run experiments with societies of 3, 10 and 50 agents. On some of the
experiments we limited the lifetime of the agents to 1000 iterations; when an
agent dies, another is born. Sometimes the algorithm considers the movement of
the agents in the 2D space, which may or may not influence the nature of the
interactions.

In this paper we focus only the results of the popularity algorithm. For a
detailed exposition of the results of the other two algorithms please refer to [17].

3.1 The Popularity Algorithm

Popularity is a numerical parameter that each agent attributes to a rhythm in
its repertoire. The parameter is modified both by the listener and by the player
during an interaction. If the listener recognises the rhythm (that is, if it holds
this rhythm in its repertoire), then it will increase the popularity index of this
rhythm and will give a positive feedback to the player. A positive feedback is an
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acknowledgment signal, which will prompt the player to increase the popularity
index of this rhythm in its repertoire as well. Conversely, if the listener does not
recognize the rhythm, then it will add this rhythm to its repertoire and will give
a negative feedback to the player, which will cause the player to decrease the
popularity index of this rhythm. Furthermore, there is a memory loss mechanism
whereby after each interaction all the rhythms have their popularity index de-
creased by a small value of 0.05. This accounts for a natural drop in popularity
due to ageing of the rhythm. The diagram of this interaction is displayed in Fig.
6a.
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Fig. 5. Results from a typical run of the popularity algorithm with 10 agents.

Fig. 5 shows the results after 5000 iterations of the popularity algorithm
without population renewal. Fig. 5a displays the development of the repertoire
from the individual agents and the graph in Fig. 5b displays the corresponding
average across the agents. Here the repertoire of each agent grows monotonously
during 500 iterations and subsequently oscillates around a stable point.

Fig. 5c displays the development of the repertoire of the whole society being
a direct consequence of the lifetime of each rhythm. The average number of
agents sharing a rhythm (Fig. 5d) is calculated by summing the instant number
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of agents sharing a rhythm (Fig. 4c) for all rhythms, and dividing the result
by the number of rhythms currently present in the society (Fig. 5c). Fig. 5d)
provides the means to assess the global behavior of the society; for instance, if
it develops coherently in terms of the popularity of existing rhythms.

Fig. 5e represents the development of complexity of the individual agents
and Fig. 5f gives the corresponding average. Initially, the size and complexity of
the repertoire of individual agents are very close to the average, but this trend
is replaced quickly by repertoires of different sizes amongst the agents.

3.2 The Transformation and Complexity Algorithms

As its name suggest, the transformation algorithm (Fig. 6b) applies transforma-
tions on a rhythm whenever it is communicated between agents. The motivation
behind this algorithm is to foster novelty. We conducted experiments to evaluate
the degree to which transformations occurring during the interactions have an
impact on the organisation of the emerging repertoire as time progresses.

The diagram of the complexity algorithm is shown in Fig. 6c. With the
complexity algorithm we studied the effect of preference for particular types of
rhythm; in this case, we wanted to establish whether the agents would show
preference for rhythms with identical complexity; we have developed methods to
measure this complexity. Here the agents include in their repertoire only those
listened rhythms that fall within a window of complexity centered in the average
complexity of the rhythms of the listening agent.

Agent Player

Play a rhythm and increase
the counter for the number of
times that this rhythm has
been used.

Agent Listener

Search for the heard rhythm
in its repertoire.

If the rhythm is not found
then the complexity of the
rhythm is measured.

If the complexity of the
rhythm falls within the
complexity window (whose
central value is the average
complexity of its repertoire)
then the rhythm is added to
its repertoire.

Agent Player

Play a rhythm and increase
the counter for the number of
times that this rhythm has
been used.

Agent Listener

Agents present in the same
geographical position of the
agent player listen to the
rhythm and compare it with
all rhythms in their repertoire.

If the heard rhythm is not
found, then transform this
rhythm and add it to the
repertoire.

Agent Player

Play a rhythm and increases
the counter for the number of
times that this rhythm has
been used.

Receive feedback.

If feedback is positive, then
increase the counter for the
popularity of the rhythm in its
repertoire.

If feedback is negative, then
decrease the counter for the
popularity of the rhythm in its
repertoire.

If the minimum popularity
threshold for this rhythm has
been reached, then remove
this rhythm from its
repertoire.

If the transformation
threshold for this rhythm has
been reached, then
transform this rhythm.

Agent Listener

Search for the heard rhythm
in its repertoire.

If the rhythm is found, then
give a positive feedback to
the agent player and
increase the counter for the
popularity of the rhythm in its
repertoire.

If the rhythm is not found,
then add this rhythm to the
repertoire and give a
negative feedback to
the agent player.

a) b)

c)

Fig. 6. a) Popularity algorithm; b) Transformation algorithm; c) Complexity algo-
rithm.
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4 Rhythmic Phrases in the Social Context

The interaction processes introduced above developed into some interesting be-
haviours, revealing the dynamics of the representations of the rhythmic units.
From a musical point of view, however, the output of the system is not yet satis-
factory. This is not surprising because our intention is that these acquired units
should be considered as the basic material the agents will use when playing in a
synchronised mode. In this section we will demonstrate how the agents can cre-
ate a rhythmic background texture that will also establish the metric structure
of a longer piece.

4.1 Emergent Phrase Length

Most often the rhythmic sections of musical pieces consist of repetitions of small
rhythmic units. This fact may have the function of either reinforce or contradict
a metric structure. We decided to conduct an experiment where all the agents
present in a given geographic position would play their rhythms simultaneously,
as opposed to the interaction algorithms presented in Sec. 3. Instead of focusing
on the learning process we observed how the agents would play a collective
rhythmic piece.

If each agent plays one of the rhythms from its repertoire and repeats it, there
will be a strong metrical cue associated with this repetition. The rhythms that
belong to the repertoires of the agents may or may not have different lengths due
to the transformations (Sec.2.1). When played together there will be an instant
where all the agents will hit the initial beat of their basic rhythm at the same
time. The difference between two such consecutive instants defines the length of
the music phrase.

When the lengths of the basic rhythms are divisible in relation to each other
then the length of the longest will define the size of the phrase. In case the
length values are not divisible (3:2, 4:3, 5:3,...) the repetitions will generate an
interesting polyrhythmic effect.

In a polyrhythm, two or more independent rhythms are played simultane-
ously. Polyrhythms are particularly abundant in African music, Indian classical
music, Cuban music and Jazz. For a more detailed explanation on polyrhythms
please refer to Handel [22].

Algorithmically, this can be achieved by finding the least common multiple
of the lengths of all the basic rhythms. As an example we let the main rhythmic
phrase be composed and each agent will have an assigned rhythmic phrase to
compose other rhythmic units from the repertoire. The algorithm is defined as
follows:

– Select a basic rhythm from the repertoire.
– Calculate the least common multiple between the lengths of the basic rhythms

of all the agents.
– Repeat the basic rhythm across the entire composition, except for its as-

signed phrase.
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– Select from a series of rhythms contained in the repertoire to compose an
individual rhythmic phrase.
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Fig. 7. Rhythmic composition resulting from the performance when three agents meet
and play simultaneously.
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Fig. 8. Rhythmic composition where the phrase length is the result of one repetition of
the rhythm from the first agent and two repetitions of the basic rhythms of the other
two (polyrhythmic underlying structure).

In Figs. 7 and 8 it is possible to observe the generated score for a group of 3
agents in different stages of the experiments.

5 Conclusion

Most current approaches to musical composition with A-Life entail the applica-
tion of a standard GA to produce streams of symbols representing musical pa-
rameters, such as musical notes. We suggested that one of the main limitations
of this approach is that GAs are not entirely adequate for musical composition
because they were not designed to address musical problems in the first place;
the act of composing music seldom involves an automated selective procedure
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towards an ideal outcome based on a set of definite fitness criteria. As a way
forward, we suggested that musical composition systems may best benefit from
A-Life if the algorithms were designed to address specific musical issues. In ad-
dition to providing a more realistic music systems, such algorithms may also be
useful for building models to study the evolution of music, which would follow
up on the research work being conducted in the field of evolution of language
[11–15].

In this paper we introduced a few algorithms, which address music as a
cultural phenomenon whereby social pressure steers the development of musical
conventions (in this case, repertoires of rhythmic sequences).

We also propose an algorithm that enables the agents to create longer rhyth-
mic structures by composition of the rhythmic units that they exchange dur-
ing the interactions. The algorithm suggests a bottom-up approach to rhythm
structure generation. Longer phrases emerge from the usage and repetition of
the rhythmic units in a collective context.

While the system is able to produce a great variety of rhythms and coher-
ent rhythmic variations, which is what we had expected to observe in the first
instance, the system also displayed a number of interesting and surprising be-
haviors that beg further scrutiny. We are currently studying the behaviors of
these algorithms in order to ascertain whether they could be used to model the
way in which rhythms emerge and develop in real societies, e.g. tribal music in
Africa.

We are currently experimenting with runs involving agents with different
behaviors and with agents that change their behavior during the interactions.
We are also conducting experiments where the agents learn from the collec-
tive performance environment in order to observe the emergence of composition
grammars and new behaviours.

Examples of the rhythms generated by the system, accompanied by a brief
explanations of the behaviors that generated them are available at:

http://cmr.soc.plymouth.ac.uk/members/jmartins/research.htm
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